
Novosadová et al.
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Abstract

Segmentation of signals often relies on the polynomial model which assumes that
every segment is a polynomial of certain degree, and that the segments are
modeled independently of each other. Segment borders (breakpoints) correspond
to positions in the signal where the model changes its polynomial representation.
In this work we show that using orthogonal polynomials instead of other systems
in the model is beneficial when signals corrupted by noise are due to
segmentation. The switch to orthogonal bases brings better resolving the
breakpoints, it removes the need for including additional parameters and their
tuning, and it brings numerical stability. And, it comes for free!
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1 Introduction
Segmentation of signals is one of the most important applications in digital sig-

nal processing, while the most prominent sub-area is the segmentation of images.

Plethora of methods exists which try to determine individual non-overlapping parts

of the signal. The neighboring segments should be identified such that they con-

trast in their “character”. For digital signal processing, such a vague word has to

be mathematically expressed in terms of signal features, which then differ from seg-

ment to segment. As examples, the segments could differ in their level, statistics,

frequency content, texture properties etc. The point in signal where the character

changes is called a breakpoint, i.e. a breakpoint indicates the location of segment

border. The features involved in the segmentation are chosen or designed apriori,

while the other class of methods aims at learning discriminative features from the

training data [1, 2].

Within the first of the two classes, i.e. within approaches based on modeling, one

can distinguish explicit and implicit types of models. In the “explicit” type, the

signal is modeled such that it is a composition of sub-signals which often can be

expressed analytically [3, 4, 5, 6, 7, 8, 9, 10]. In the “implicit” type of models,

the signal is characterized by features that are derived from the signal by using

an operator [11, 12, 13, 14, 15]. The described differences are in an analogy to the

“synthesis” and “analysis” approaches, respectively, recognized in the sparse signal

processing literature [16, 17]. Although the two types of models are different in their
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nature, connections can be found; for example, the recent article [18] showing the

relationship between splines and generalized total variation regularization.

Note that signal denoising and segmentation often rely on similar or even identical

models. Indeed, when borders of segments are found, denoising can be easily done

as postprocessing. Conversely, the byproducts of denoising can be used to detect

segment borders. This paradigm is also true for our model, which can provide seg-

mentation and signal denoising/approximation at the same time. As examples of

other works that aim at denoising but can be used for segmentation as well, we cite

[13, 14, 19, 20].

The method described in this article belongs to the “explicit” type of models.

We work with noisy one-dimensional signals, and our underlying model assumes

that individual segments can be well approximated by polynomials. The number

of segments is supposed to be much lower than the number of signal samples—

this natural assumption at the same time justifies the use of sparsity measures

involved in segment identification. The model and algorithm presented for 1D in

this article can be smoothly generalized to a higher dimension. For example, images

are commonly modeled as piecewise smooth 2D-functions [21, 22, 23, 24, 25].

In [3, 9, 7], the authors build explicit signal segmentation/denoising models based

on the standard polynomial basis {1, t, t2, . . . , tK}. In our previous articles, e.g.

[5, 26], we used this basis as well. This article shows that modeling with orthonor-

mal bases instead of the standard basis (which is clearly non-orthogonal) brings

significant improvement in detection of the signal breakpoints, and thus the even-

tual denoisng performance. Worth noting that this improvement comes virtually for

free.

The article is structured as follows: Sec. 2 introduces the mathematical model of

segmentation/denoising, and it suggests the eventual optimization problem. The

numerical solution to this problem by the proximal algorithm is described in Sec. 3.

Finally, Sec. 4 provides the description of experiments and presents the results.

2 Problem formulation
In continuous time, a polynomial signal of degree K can be written as a linear

combination of basis polynomials:

y(t) = x0p0(t) + x1p1(t) + . . .+ xKpK(t), t ∈ R, (1)

where xk are the expansion coefficients in such a basis. If the standard basis is used,

i.e.

p0(t) = 1, p1(t) = t, . . . , pK(t) = tK , (2)

we approach a particular case when respective scalars xk correspond to the intercept,

slope etc.

Assume a discrete-time setting and limit the time instants to n = 1, . . . , N . Ele-

ments of a polynomial signal are then represented as

y[n] = x0p0[n] + x1p1[n] + . . .+ xKpK [n], n = 1, . . . , N. (3)
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In this formula, the signal is constructed by a linear combination of sampled poly-

nomials.

Assuming the polynomials {pk} are fixed, every signal given by (3) is determined

uniquely by the set of coefficients {xk}. In contrast to this, we introduce a time

index also to these coefficients, allowing them to change in time:

y[n] = x0[n]p0[n] + x1[n]p1[n] + . . .+ xK [n]pK [n]. (4)

This may seem meaningless at this moment, however such an excess of parameters

will play a principal role shortly. It will be convenient to write this relation in a more

compact form, for which we need to introduce the notation

y =


y[1]

...

y[N ]

 ,xk =


xk[1]

...

xk[N ]

 ,Pk =


pk[1] 0

. . .

0 pk[N ]

 (5)

for k = 0, . . . ,K. After this, we can write

y = P0x0 + . . .+ PKxK (6)

or even more shortly

y = Px = [P0| · · · |PK ]


x0

|

...

|

xK

 . (7)

Such a description of signal of dimension N is obviously overcomplete — there

is (K + 1)N parameters to characterize it. Nevertheless, assume now that y is a

piecewise polynomial and that it consists of S independent segments. Each segment

s ∈ {1, . . . , S} is then described by K + 1 polynomials. In our notation, this can be

achieved by letting vectors xk be constant within time indexes belonging to partic-

ular segments. (The polynomials in P are fixed.) See Fig. 1 for an illustration. The

reason for not using a single number describing each segment is that the positions

of the segment breakpoints are unknown and will be subject to search.

Due to the facts described above, the finite difference operator∇ (properly defined

later) applied to vectors xk produces sparse vectors. Actually, not only ∇ applied

to each parameterization vector produces S−1 nonzeros at maximum, but also the

nonzero components of each ∇xk occupy the same positions across k = 0, . . . ,K.

Together with the assumption that the observed signal is corrupted by an i.i.d.

Gaussian noise, it motivates us to formulate the denoising/segmentation problem

as finding

x̂ = arg min
x

‖reshape(Lx)‖21 s.t. ‖y −PWx‖2 ≤ δ. (8)
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In this optimization program, W is the diagonal matrix that enables us to adjust

the lengths of vectors in P, operator L represents the stacked differences such that

L =


∇ · · · 0

. . .

0 · · · ∇

 , Lx =


∇x0

...

∇xK

 (9)

with ∇ : RN 7→ RN−1, and reshape() takes the stacked vector Lx to the form of

a matrix with disjoint columns:

reshape(Lx) =
[
∇x0| · · · |∇xK

]
. (10)

The first term of (8) is the penalty. Piecewise constant vectors xk suggest that

these vectors are sparse under the difference operation ∇. We use the `21-norm [27]

that acts on a matrix Z and is formally defined by

‖Z‖21 =
∥∥∥ [‖Z1,:‖2, ‖Z2,:‖2, . . . , ‖Zp,:‖2

] ∥∥∥
1

= ‖Z1,:‖2 + . . .+ ‖Zp,:‖2 , (11)

i.e. the `2-norm is applied to the particular rows of Z and the resulting vector is

measured by the `1-norm. The `1-norm serves as a convex substitute of the true

sparsity measure [28, 29]. The second term in (8) is the data fidelity term. The

Euclidean norm reflects the fact that gaussianity of the noise is assumed and that

its level should fall below δ. Finally, vector x̂ contains the achieved optimizers.

When standard polynomial basis {1, t, . . . , tK} is used for the definition of P, the

high-order components blow up so rapidly that it brings two problems:

First, the difference vectors follow the scale of the respective polynomials. In the

absence of normalization, i.e. when W is identity, this is not fair with respect to the

`21-norm, since no polynomial should be preferred. In this regard, the polynomials

should be “normalized” such that W contains the reciprocal of `2-norms of the re-

spective polynomials. It is worth noting that in our former work, in particular in [6],

we basically used model (8), but with the difference that there has been no weight-

ing matrix and we used L = diag(τ0∇, . . . , τK∇) instead of L = diag(∇, . . . ,∇), cf.

(9). Finding suitable values of τk has been a demanding trial-and-error process. In

this perspective, simple substitution Wx → x brings us in fact to the model from

[6], and we see that τk should correspond to the norms of the respective polynomial.

However, it still holds true that manual adjustments of these parameters can in-

crease the success rate of the breakpoint detection, as they depend, unfortunately,

on the signal itself (recall that a part of a signal can correspond to locally high

parameterization values while other part does not). This is however out of scope of

this article.

Second, there is the numerics issue, meaning that the algorithms (see below) used

to find the solution x̂ failed due to the too wide range of the processed values.

However, for short signals (like N ≤ 500), this problem was solved by taking the

time instants not as integers, but linearly spaced values from 1/N to 1, as the

authors of [3] did.
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This article shows that the simple idea of shifting to orthonormal polynomials

solves the two problems with no extra requirements. At the same time, orthonormal

polynomials result in better detection of the breakpoints.

One may also think of an alternative, unconstrained formulation of the problem:

x̂ = arg min
x

‖reshape(Lx)‖21 +
λ

2
‖y −PWx‖2. (12)

This formulation is equivalent to (8) in the sense that to a given δ, there exists

λ such that the optima are identical. However, the constrained form is preferable

since changing the weight matrix W does not induce any change in δ, in opposite

to a possible shift in λ in (12).

3 Algorithms

We utilize the so-called proximal splitting methodology for solving optimization

problem (8). Proximal algorithms (PA) are algorithms suitable for finding minimum

of a sum of convex functions. Proximal algorithms perform iterations involving sim-

ple computational tasks such as evaluation of gradient or/and proximal operators

related to the individual functions. It is proven that under mild conditions, PA

provide convergence. The speed of convergence is influenced by properties of the

functions involved and by the parameters used in the algorithms.

3.1 Condat algorithm solving (8)

The generic Condat algorithm (CA) [30, 31] represents one possibility for solving

problems of type

minimize h1(L1x) + h2(L2x), (13)

over x, where functions h1 and h2 are convex and L1, L2 are linear operators. In our

paper [6] we have compared two variants of CA; in the current work we utilize the

variant that is easier to implement—it does not require a nested iterative projector.

To connect (13) with (8), we assign h1 = ‖ · ‖21, L1 = reshape(L ·), h2 =

ι{z: ‖y−z‖2≤δ} and L2 = PW, while ιC denotes the indicator function of a con-

vex set C.

Algorithm solving (8) is described in Alg. 1. Therein, two operators are involved:

Operator softrowτ (X) takes matrix X and performs the row-wise group soft thresh-

olding on it. Projector projB2(y,δ)(x) finds the closest point to x in the ball

{z : ‖y − z‖2 ≤ δ}. Both the operations are computationally cheap, see for ex-

ample [5] for details.

Convergence of the algorithm is guaranteed when it holds ξσ‖L>1L1 + L>2L2‖ ≤ 1.

For the use of the inequality ‖L>1L1 + L>2L2‖ ≤ ‖L1‖2 + ‖L2‖2, it is necessary to
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Algorithm 1: The Condat Algorithm solving (8)

Input: PW : RN(K+1) → RN , y, δ
Output: x̂ = x(i+1)

Set parameters ξ, σ > 0 and ρ ∈ (0, 2)

Set initial primal variable x(0) ∈ RN(K+1) and dual variables u
(0)
1 ,u

(0)
2 ∈ R(N−1)(K+1)

for i = 0, 1, . . . do

x̄(i+1) = x(i) − ξ
(
L>reshape>(u

(i)
1 ) + (PW)>(u

(i)
2 )

)
x(i+1) = ρx̄(i+1) + (1− ρ)x(i)

p
(i)
1 = u

(i)
1 + σ reshape(L(2x̄(i+1) − x(i)))

ū
(i+1)
1 = p

(i)
1 − σ softrow

1/σ(p
(i)
1 /σ)

u
(i+1)
1 = ρū

(i+1)
1 + (1− ρ)u

(i)
1

p
(i)
2 = u

(i)
2 + σPW(2x̄(i+1) − x(i))

ū
(i+1)
2 = p

(i)
2 − σ projB2(y,δ)

(p
(i)
2 /σ)

u
(i+1)
2 = ρū

(i+1)
2 + (1− ρ)u

(i)
2

return x(i+1)

have the upper bound on the operator norms. The upper bound of ‖L1‖ is:

‖L1‖2 = ‖L‖2 = max
‖x‖2=1

‖Lx‖22 = max
‖x‖2=1

∥∥∥∥∥∥∥∥

∇x0

...

∇xK


∥∥∥∥∥∥∥∥
2

2

= max
‖x‖2=1

(
K∑
k=0

‖∇xk‖22

)

≤
K∑
k=0

(
max
‖x‖2=1

‖∇xk‖22

)

≤
K∑
k=0

‖∇‖2 ≤ 4(K + 1)

and thus ‖L1‖ ≤ 2
√
K + 1. The operator norm of PW satisfies ‖PW‖2 =

‖PWW>P>‖ and thus it suffices to find the maximum eigenvalue of PW2P>.

Since PW has the multi-diagonal structure (cf. relation (7)), PW2P> is diagonal

and in effect it is enough to find the maximum on its diagonal. Altogether, the

convergence is guaranteed when ξσ
(
max diag(PW2P>) + 4(K + 1)

)
≤ 1.

3.2 Signal segmentation/denoising

Vectors x̂ as the optimizers of problem (8) allow a means to estimate the underlying

signal; it can be done simply by ŷ = PWx̂. However, this way we do not obtain

the segment ranges. Second disadvantage of this approach is that the jumps are

typically underestimated in size, which comes from the bias inherent to the `1 norm

[32, 33, 34] as the part of the optimization problem.

The nonzero values in ∇x̂0, . . . ,∇x̂K indicate segment borders. In practice, it is

almost impossible to achieve truly piecewise constant optimizers [32] as in the model

case in Fig. 1, and vectors ∇x̂k are crowded by small elements, besides larger values

indicating possible segment borders. We apply a two-part procedure to obtain the
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segmented and denoised signal: the breakpoints are detected first, and then each

detected segment is denoised individually.

The `21-norm cost promotes significant values in vectors ∇x̂k situated at the

same positions. We compute a single vector using ∇x̂ks using the weighted `p-norm

according to the formula

d = p
√

(α0∇x̂0)p + · · ·+ (αK∇x̂K)p, (14)

where αk = 1/max(|∇x̂k|) are positive factors serving to normalize the range of

values in the parameterization vectors differences. The computations in (14) are

elementwise.

The comparisons presented in this article will be concerned only with the detection

of breakpoints, and thus in our further analysis, we process no more than the vector

d. However, in case we would like to recover the denoised signal we would proceed

as in our former works [5, 6], where first a moving median filter is applied to d and

subtracted from d, allowing to keep the significant values and at the same time to

push small ones toward zero. Put simply, values larger than a selected threshold

then indicate the breakpoints positions. The second step is denoising itself, which

is done by least squares on each segment separately, using (any) polynomial basis

of degree K.

4 Experiments
The experiments have been designed to find out whether substituting non-

orthogonal bases with the orthogonal ones reflects in emphasizing the positions

of breakpoints when exploring the vector d.

4.1 Signals

As test signals, five randomly generated piecewise quadratic signals (K = 2) of

length N = 300 were generated. All signals consist of six segments of random

lengths. There are noticeable jumps in value between neighboring segments. The

noiseless signals are denoted by yclean and examples are depicted in Fig. 2. The

signals have been corrupted by the Gaussian i.i.d. noise, resulting in signals ynoisy =

yclean+ε with ε ∼ N(0, σ2). With these signals, we can determine the signal to noise

ratio (SNR), defined as

SNR (ynoisy,yclean) = 20 · log10

‖yclean‖2
‖ynoisy − yclean‖2

. (15)

Five SNR values were prescribed for the experiment: 15, 20, 25, 30 and 35 dB. These

numbers entered into the calculation of the respective noise standard deviation σ

such that

σ =
‖yclean‖2√
N · 10

SNR
10

. (16)

It is clear that the resulting σ is influenced by energy of the clean signal as well. For

each signal and each SNR, 100 realizations of noise were generated, making a set of

2,500 noisy signals in total.
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4.2 Bases

Since the test signals are piecewise quadratic, the bases subject to testing all consist

of three linearly independent discrete-time polynomials. For the sake of this section,

the three basis vectors can be viewed as the columns of the N × 3 matrix. The

connection to problem (8) is that these vectors form the diagonals of the system

matrix PW. In the following, the N × 3 basis matrices will be distinguished by the

letter indicating the means of their generation:

4.2.1 Non-orthogonal bases (B)

Most of the papers that explicitly model the polynomials utilize directly the stan-

dard basis (2), which is clearly not orthogonal either in continuous nor discrete

setting. The norms of such polynomials differ significantly as well. In addition to

the standard basis, we generated another 49 B-bases using formula B = SW1AW2.

Here, the elements of the standard basis—the columns of S—are first normalized

using diagonal W1, then mixed using a random Gaussian matrix A and finally

dilated to different lengths using W2 having uniformly random entries at the diag-

onal. This way we disposed of 50 B-bases in total, which are non-orthogonal and

non-normalized at the same time.

4.2.2 Normalized bases (N)

Another set of 50 bases, the N-bases, were obtained by simply normalizing the

length of the B-basis polynomials, N = BW3. We want to find out whether this

simple step helps in detecting the breakpoints.

4.2.3 Orthogonal bases (O)

Orthogonal bases were obtained by orthogonalization of N-bases. The process was

as follows: A matrix N was decomposed by the SVD, i.e.

N = UΣV>. (17)

Matrix U consists of three orthonormal columns of length N . The new orthonormal

system is simply the matrix O = U.

One could doubt whether the new basis O spans the same space as N does. Since

N has full rank, Σ contains three positive values on its diagonal. Because V is also

orthogonal, the answer to the above question is positive. A second question could

be whether the new system is still consistent with any polynomial basis on R. The

answer is yes again, since matrices N and U, respectively, can be substituted by

their continuous-time counterparts, thus generating the identical polynomial.

4.2.4 Random orthogonal bases (R)

The last class consists of random orthogonal polynomial bases. The R-bases were

generated as follows: First, the SVD has been applied to the matrix N as in (17),

now symbolized using the subscripts, N = UNΣNV>N. Next, a random matrix A

of size 3× 3 was generated, each element of whose independently follows the Gauss

distribution. This matrix is then decomposed to A = UAΣAV>A. The new basis R

is obtained as R = UNUA. Note that since both matrices on the right hand side
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are orthonormal, the columns of R form an orthonormal basis spanning the desired

space. Elements of UA determine the linear combinations used in forming R.

We generated 50 such random bases, meaning that in total (B, N, O, R) we

disposed of 200 bases.

4.3 Experiment

The algorithm of breakpoint detection that we utilized in the experiments has been

described in Sec. 3.2. We used p = 2 in formula (14) for computing the input vector.

The Condat algorithm run for 2,000 iterations which was sufficient in all cases.

Three items were subject to vary within the experiments, configuring the problem

(8):

• the input signal y,

• parameter δ controlling the modeling error,

• the basis of polynomials PW

(induced from the columns of matrices B,N,O or R).

Each signal entered into calculation with each of the bases, making 2,500 × 200

experiments in total in signal breakpoints detection.

Setting parameter δ

For each of the 2,500 noisy signals, the parameter δ was calculated. Since both

the noisy and clean signals are known in our simulation, δ could be determined

according to

δ = ‖ynoisy − yclean‖2 · 1.05

meaning that we allowed the model error to deviate from the ground truth by 5%

at maximum. Fig. 3 shows the distribution of values of δ. For different signals, δ is

concentrated around a different quantity. This effect is due to the noise generation,

wherein the resulting SNR (15) was set and fixed at first, while δ is linked to the

noise deviation σ that depends on the signal, cf. (16).

4.4 Evaluation

Based on vector d, several values that indicate the quality of breakpoint detection

process were computed. But first, for each single signal in test, two disjoint sets of

indexes are chosen out of {1, . . . , N}.
Highest values (HV): Recall that each of the clean test signals contains five break-

points. Note also that d defined by (14) is nonnegative. The HV group thus gathers

the indexes of the five values in d that are likely to represent breakpoints. These

five indexes are selected iteratively: At first, the largest value is chosen to belong to

HV. Then, since it can happen that multiple high values sit next to each other, the

two neighboring indexes to the left and two to the right are omitted from further

consideration. The remaining four steps select the rest of the HV members in the

same manner.

Other values (OV): The second group consists of the remaining indexes in d.

The indexes excluded during the HV selection are not considered in OV. This way,

the number of elements in OV is 274 at least and 289 at most, depending on the

particular course of the HV selection process.
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For each signal, the ratio of the averages of the values belonging to HV versus

the average of the values in OV is computed; we denote this ratio AAR. We also

computed the MMR indicator, which we define as the ratio of the minimum of values

of HV to the maximum of the OV values. Both these indicators, and especially the

MMR, should be as high as possible to enable safe recognition of the breakpoints.

The next parameter in evaluation was the number of correctly detected break-

points (NoB). We are able to introduce NoB in our report since the true positions of

the breakpoints are known. The breakpoint positions are not always found exactly,

especially due to the influence of the noise (will be discussed later), and therefore

we consider the breakpoint as detected correctly if the indicated position lies within

an interval of ± two indexes from the ground truth.

In addition, classical mean square error (MSE) has been involved to complete the

analysis. The MSE measures the average distance of the denoised signal from the

noiseless original, and is defined as

MSE(ydenoised,yclean) =
1

N
‖ydenoised − yclean‖22.

As ydenoised, two variants were considered: a) the direct signal estimate computed

as ŷ = PWx̂, where x̂ is the solution to (8), and b) the estimate where the ordinary

least squares have been used separately on each of the detected segments with a

polynomial of degree two.

Note that approach b) is an instance of the so-called debiasing methods, which

is sometimes done in regularized regression, based on the apriori knowledge that

the regularizer biases the estimate. As an example, debiasing is commonly done in

LASSO estimation [35, 33], where the biased solution is used only to fix the sparse

vector support and least-squares are then used to make a better fit on the reduced

subset of regressors; see also related works [28, 6, 36].

The results from approach a) will be abbreviated “CA” in the following, meaning

“Condat Algorithm”, and the results from the Least Squares adjustment by “LS”.

4.5 Results

Using orthogonal bases reflects in significantly better results than working with

non-orthogonal bases. The improvement can be observed in all parameters in con-

sideration. The AAR, MMR and NoB indicators increase with orthogonal bases,

and the MSE decreases.

An example comparison of the three types of bases in terms of the AAR is de-

picted in Fig. 4. A larger AAR means that the averages of the HV and OV values,

respectively, are more apart. Analogously, Fig. 5 shows an illustration of the per-

formance in terms of the MMR. The MMR gets greater when the smallest value

from HV is better separated from the greatest value from OV. This creates a means

for correct detection of the breakpoints. From both figures, it is clear that R- and

O-bases are preferable over N-bases.

The reader has noticed that Figs. 4 and 5 do not show the comparison across all the

test signals. The reason is that it is not possible to fairly fuse results for different

signals, since the signal shape and size of the jumps influence the values of the

considered parameters. Another reason is that the energy of the noise differs across



Novosadová et al. Page 11 of 22

signals, even when the SNR is fixed (see discussion of this effect above). However,

looking at the complete list of figures which are available at the accompanying

webpage[1], the same trend is observed in all of the figures: the orthogonal(ized)

bases perform better than the non-orthogonal bases. At the same time, there is

no clear suggestion wheteher R-bases are better than O-bases; while Fig. 5 shows

superiority of R-bases, other plots at the website contain various results.

The NoB is naturally the ultimate criterion for measuring the quality of segmen-

tation. Histograms of the NoB parameter for one particular signal are shown in

Fig. 6. From this figure, as well as from the supplementary material at the webpage,

we can conclude that B-bases are beaten by N-bases. Most importantly, the two

orthogonal classes of bases (O, R) perform better than the N-bases in a majority

of cases (although one finds situation when the systems perform on par). Looking

closer to obtain a final statement whether O-bases or R-bases are preferable, we

can see that R-bases usually provide better detection of breakpoints, however the

difference is very small. This might be the result of the test database being too

small.

Does the distribution of NoB in Fig. 6 also suggest that some of the bases may

perform better than others within the same class, when the signal and the SNR are

fixed? It is not fair to make such a conclusion based on the histograms; histograms

cannot reveal whether the effect on NoB is due to the particular realization of noise

or it is due to differences between the bases, regardless noise. Let us take some

effort to find the answer to the question. Figures 7 and 8 show selected maps of

NoB. It is clearly visible that for mild noise levels, there are bases that perform

better than the others, and that also a few bases perform significantly worse—in

a uniform manner. In the low SNR regime, on contrary, the horizontal structures

in the images prevail, meaning that specific noise shape takes over. This effect can

be explained easily: the greater is the amplitude of the noise, the greater is the

probability that an “undesirable” noise sample in the nearness of the breakpoint

spoils its correct identification.

In practice, nevertheless, the signal to be denoised/segmented is given including

the noise. In light of the presented NoB analysis, it means that (especially) when

SNR is high, it makes sense to run the optimization task (8) multiple times, i.e.

with different bases, fusing the particular results for a final decision.

The last measure of performance is the MSE. First, Fig. 9 presents an example

of denoising using the direct and least-squares approach (those are described in

Sec. 4.4). Figures 10 and 11 show successful and distracting results in terms of

MSE, respectively. While with signals “1” to “4”, orthobases improve MSE, it is

not the case of signal “5”. It is interesting to note that signal “5” does not exhibit

great performance in terms of the other indicators (AAR, MMR, NoB) neither.

4.6 Software

The experiments have been done in Matlab (2017a), and for some proximal algo-

rithm components we benefited from using the flexible UnLocBox toolbox [37]. The

code related to the experiments is available via the mentioned webpage.

[1]http://www.utko.feec.vutbr.cz/~rajmic/sparsegment

http://www.utko.feec.vutbr.cz/~rajmic/sparsegment
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5 Conclusion
The experiment confirmed that using orthonormal bases is highly preferable over

the non-orthogonal bases when solving the piecewise-polynomial signal segmenta-

tion/denoising problem. It has been shown that the number of correctly detected

breakpoints is increased when orthobases are used. Also other performance indica-

tors are improved on average with orthobases, and the plots show that the improve-

ment is the more pronounced the higher is the noise level. The effect comes almost

for free, since it is computationally cheap to generate an orthogonal polynomial

system, compared to the actual cost of iterations in the numerical algorithm. In

addition, the new approach avoids demanding hands-on setting of “normalization”

weights that has been done both by us and by other researchers previously. The

user still has to estimate δ, the parameter which estimates the noise level.

Our experiment revealed that some orthonormal bases are better than others

in a particular situation; we thus recommend to merge the detection results for

multiple bases. Such a fusion process could be an interesting direction of future

research.

We would like to extend the approach to segmentation of images as the next step.
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Figure 1 Illustration of the signal parameterization. The top plot shows four segments of a
piecewise polynomial signal (both the samples and the underlying continuous-time model); each
segment is of the second order. The middle plot are the three basis polynomials, i.e. the diagonals
of matrices Pk (in this particular case, the respective sampled vectors are mutually orthonormal,
actually). The parameterization coefficients shown in the bottom plot are vectors x0,x1,x2.
Notice that infinitely many other combinations of values in x0,x1,x2 generate the same signal,
but we show the piecewise-constant case which is of the greatest interest for our study.
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Figure 2 Example of two noiseless and noisy test signals used in the experiment. Signals of length
N = 300 consist of six segments of various length, with a perceptible jump between each two
segments. The SNRs used for this illustrations were 25 dB and 15 dB.
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Figure 3 Distribution of δ parameter across the five groups of test signals. The SNR is 25 dB in
this example. The box plots show the maximum and minimum, first quartile and the third quartile
forming the edges of the rectangle, and the median value within the box. Values of δ vary within
the signal (which is given by particular realizations of the noise) and between the signals (which is
due to fixing the SNR rather than the noise power).
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Figure 4 Results of the AAR indicator for test signal “1”. Five different SNRs in use are indicated
by the subscripts. The box plot shows the distribution of the AAR under 100 realizations of
random noise. In terms of the AAR distribution, random bases R and the orthonormalized bases O
perform better than the other two systems. Normalization of the B-bases helped in lowering the
AAR variance.
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Figure 5 Results of the MMR indicator for test signal “4”, similar to Fig. 4. The box plots clearly
exhibit a clear superiority of R-bases and O-bases over the B-bases and N-bases in terms of MMR
distribution, although the respective worst results are comparable in value.
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Figure 6 Results in terms of the NoB indicator. The respective 3D-histograms show the
frequency of the number of correctly detected breakpoints when the SNR changes, here for signal
“4”. For each SNR and a specific basis type, 5,000 experiments were performed (50 bases times
100 noise realizations). An expected trend is pronounced that increasing value of SNR lowers the
number of correctly detected breakpoints, independently of the choice of the basis. The worst
results are obtained using non-orthogonal bases (B).
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Figure 7 Number of correctly identified breakpoints (NoB) for different SNRs (from left to right
15, 20, 25, 30, 35 dB), signal “3”. In the horizontal direction are the fifty randomly generated
orthobases (R-bases). In the vertical direction are the hundred particular realizations of noise.

10 20 30 40 50

Basis

10

20

30

40

50

60

70

80

90

100

R
ea

liz
at

io
n 

of
 n

oi
se

10 20 30 40 50

Basis

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50

Basis

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50

Basis

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50

Basis

10

20

30

40

50

60

70

80

90

100 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 8 Number of correctly identified breakpoints (NoB) for different SNRs, analogously to
Fig. 7, but now for signal “5”.
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Figure 9 An example of time-domain reconstruction, test signal “1”. Left side shows the noiseless
and noisy signals, the plot on the right hand presents the direct signal estimate ŷ = PWx̂ (CA),
and the respective least squares refit (LS), on top of the noiseless signal. Clearly, LS radically
improves the adherence to the data (and thus improves the MSE). The bias of the CA is
explained in Sec. 3.2.
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Figure 10 Results in terms of MSE for test signal “2”. Left plot shows the case of direct signal
estimates (CA), right plot shows the MSE for the least squares (LS). The plots have same scale.
While simple normalization (N-bases) helps reducing the MSE, orthobases clearly bring an extra
improvement.
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Figure 11 Results in terms of MSE for test signal “5”, similar to Fig. 10. In this case, there is no
significant improvement when O- or R-bases are introduced—there is even an increase in the MSE
for LS version.
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