
Parallel Implementation of 2D Forward Discrete Wavelet
Transform on multicore CPUs

Zdenek Prusa, Pavel Rajmic

Faculty of Electrical Engineering and Communication, Brno University of Technology
Email: zdenek.prusa@phd.feec.vutbr.cz, rajmic@feec.vutbr.cz

Abstract – In this paper we present parallel implementa-

tion of 2D forward DTWT using C++ and Intel Threading

Building Blocks library. Developed algorithm is described

in detail and reached speedup is shown.

The image is processed blockwise with certain overlap

between blocks so that the result it equal to the result

obtained by processing the image as a whole. Conse-

quently, the blocking artifact is completely eliminated.

The exact dimensions of the overlap is given by the

developed algorithm. The algorithm works with any block

size also the blocks do not have to have equal dimensions.

The overlap given by the algorithm ensures that blocks

can be processed independently. Necessary redundancy is

discussed also.

1 Introduction

The discrete-time wavelet transform (DTWT) is a stan-
dard tool in the field of signal and image processing and it
has many applications in signal analysis, compression [1],
denoising [2], watermarking [3] and computer vision [4].
Aside from effective representation of signals by wavelet
coefficients, wavelet transform also gained its popularity
due to Mallat’s pyramidal algorithm [5], which computes
dyadic DTWT using recursive two channel (bi)orthogonal
filter bank providing only linear computational complexity.

Mallat’s pyramidal algorithm was modified so that it
can be performed segmentwise on one-dimensional signals
– SegDTWT [6]. This means that the input signal is di-
vided into overlapping segments, each of them producing
certain number of wavelet coefficients which can be com-
bined to make DTWT of the whole signal. This algorithm
is primarily suitable for real-time processing.

In this paper, we propose a generalization of this algo-
rithm for two dimensional signals (images). In comparison
to the one-dimensional version, the new algorithm can be
simplified considering assumptions summarized in Section
3. As a result, DTWT of any image can be performed on
independent segments and hence in parallel.

The requirements on the algorithm can be stated as fol-
lows:

1. Segment size. The algorithm must be able to pro-
cess segments of arbitrary sizes (up to some minimum
values).

2. Segment position. The algorithm must be applica-
ble to any rectangular segment chosen from image.

3. Order of computation. The segments can be pro-
cessed in arbitrary order.

4. Type of wavelet filters. Both orthogonal and
biorthogonal filter banks can be used.

To achieve the requirements several modifications of the
original algorithm need to be done.

2 Background and related work

At this moment several research papers has been published
that deal with parallelization of DTWT on images. At
some point they have to take into account some kind of
segmentation of an image. Several approaches have been
proposed but all of them have drawbacks. First of all, we
are only interested in algorithms, which do not produce
errors at the edges of segments. This fact leaves us with
algorithms in which parallelism is present only in the form
of separate processing of rows and columns in each decom-
position step [7], or with algorithms that limit themselves
to segments of dimensions equal to powers of two [8]. The
dimension restriction makes dynamic task scheduling im-
possible and it can introduce substantial redundancy of the
computation.

Most of the papers also aims at algorithm for a concrete
device and/or concrete wavelet filters [9].

2.1 Classical DTWT algorithm

When performing DTWT of finite length signal, several
samples beyond signal boundaries need to be known so that
signal reconstruction is exact. Several types of boundary
treatment can be used [10]. Usually the DTWT is required
to be non-expansive (each step produces exactly half the
number of coefficient than it was in the previous step).
This is possible only on one of these cases:

• Periodic extension is used.
• Symmetric filters and corresponding symmetric exten-
sions are used.

• Specialized matrix method is used [11].

All of these cases are limited in some way, so in the follow-
ing text only expansive DTWT is considered. In such a
case, the length of the vector of coefficients is given by the
length of linear convolution of two finite-length signals.

The following algorithm is depicted in Fig. 1.
Algorithm 1:[Decomposing pyramid algorithm DTWT]
Let x be a discrete input signal of length s, the two wavelet
decomposition filters are defined highpass g (length mg)
and lowpass h (length mh), J is a positive integer denot-
ing the decomposition depth. Also, the type of boundary
treatment has to be known:

1. Denote the input signal x by a0 and set j = 0 and
m = mg .

2. One decomposition step:
(a) Extending the input vector. Extend aj from both
the left and the right sides by (m − 1) samples,
according to the type of boundary treatment.

(b) Filtering. Convolve the extended signal with fil-
ter g.

(c) Cropping. Take from the result just its central
part, so that the remaining “tails” on both the
left and the right sides have the same length (m−
1) samples.

(d) Decimation. Downsample the resultant vector.
Denote the result by dj+1 and store it. Then set
m = mh and repeat items b) d), now with filter
h, denoting and storing the result as aj+1.

3. Increase j by one. If it now holds j < J , return to
item 2, in the other cases the algorithm ends.

After Algorithm 1 has been finished, we have the wavelet
coefficients stored in J + 1 vectors (of different length)
aJ ,dJ ,dJ−1, . . . ,d1.

a0[n] b

h, ↓ 2

g, ↓ 2 d1[n]

h, ↓ 2

g, ↓ 2

b

d2[n]

h, ↓ 2

g, ↓ 2

b

a3[n]

d3[n]

Figure 1: Iterated filter bank for pyramidal algorithm
DTWT with J = 3.

2.2 SegDTWT algorithm

In this part, the SegDTWT algorithm version 1.0 from
[6] is presented. This algorithm was modified later in [12],
however these modifications were made mainly for process-
ing acoustic signals in real time and they are not important
when processing images. The SegDTWT algorithm was
developed for orthogonal filter banks, but biorthogonal fil-
ters can also be used, zero padded to the same length.

The one-dimensional input signal x is divided into S ≥ 1
segments of equal length s. The last one can be less long
than s. To achieve correct follow-up of two sets of wavelet
coefficients in decomposition level j it is necessary for two
consecutive segments to be properly extended. It has been

shown that two consecutive segments must have:

r(j) = (2j − 1)(m− 1) (1)

input samples in common after they have been extended.
This extension has to be divided into right extension of
the first segment (of length R) and the left extension of
the following segment (of length L) so that r(j) = R +
L, however R,L ≥ 0 cannot be chosen arbitrarily. The
minimum suitable right extension of the n-th segment for
n = 1, 2, . . . , S − 2 is

Rmin(n) = 2Jceil
(ns

2J

)

− ns, (2)

and the maximum left extension of (n+ 1)-th segment is

Lmax(n+ 1) = r(J) −Rmin(n). (3)

Algorithm 2:[SegDTWT v. 1.0] Let the wavelet filters
g,h of length m, decomposition level J and boundary
treatment be given. The input signal x is divided into
segments of equal length s ≥ 2J and the segments are de-
noted by 1x,2 x,3 x,
1. Set n = 1.
2. Read first segment, 1x, label it as “current” and ex-
tend it from left by r(J) zero samples.

3. If the current segment is the last one at the same time,
compute DTWT of this segment using Algorithm 1
and finish.

4. Load (n+ 1)-th segment and label it as “next”.
5. If the next segment is the last one:
(a) Combine the current and the next segment, set
this new segment as current (the current becomes
last one).

(b) Extend the current segment by r(J) zero samples
from the right.

(c) Calculate DTWT of depth J from the extended
current segment using the Algorithm 1 with mod-
ification in step 2(a), which will be: “Modify the
vector aj at indexes r(J−j)−m+2, . . . , r(J−j),
counted from right side of aj according to chosen

boundary treatment.”
Else

(d) Determine Lmax(n+1) for the next segment and
Rmin(n) for current segment using formulas (2)
and (3).

(e) Extend current segment from the right by
Rmin(n) samples from the next segment. Extend
next segment from the left by Lmax(n+1) samples
from the current segment.

(f) If the current segment is the first one, calculate
the DTWT of depth J from the extended current
segment using the algorithm 1 with modification
in step 2(a), which will be: “Modify the the vec-
tor aj at indexes r(J − j)−m+ 2, . . . , r(J − j)
according to chosen boundary treatment.” Else
calculate the DTWT of depth J from the ex-
tended current segment using the algorithm 1
with omitting step 2(a).

6. Modify the vectors containing the wavelet coefficients
by trimming off a certain number of redundant coef-
ficients from left side, specifically: on the j-th level,
j = 1, 2, . . . , J − 1 trim off r(J − k) coefficients.

7. If the current segment is last segment, trim off the
vectors in the same manner as in previous step r(J−k)
but this time from the right.

8. Store the result as naJ ,
ndJ ,

ndJ−1, . . . ,
nd1.

9. If the current segment is not the last one, set the next
segment as current, increase n by 1 and go to item 4.

2.3 Separability in two dimensions

The simplest way how to perform the DTWT on images is
taking rows and columns as 1D signals. This approach is
called separable and it means that algorithms described in
previous section can be exploited. Computing one step of
the DTWT of the image is equivalent to two consecutive
1D DTWTs. As shown in Fig. 2, first the rows, then the
columns are processed (or vice versa). In this paper only
non-standard division of spectra is considered [13], so that
each row and column are not decomposed all the way to
the level J , but one step at a time and in j-th step four
subbands are produced aj

LL,d
j
LH,d

j
HL,d

j
HH (the subscripts

denote filter which was used for rows and columns respec-
tively, superscript denotes level of decomposition). The
next step is then performed on subband a

j
LL.

x b

h, ↓ 2

g, ↓ 2

h, ↓ 2

g, ↓ 2

b

h, ↓ 2

g, ↓ 2

b

a1
LL

d1
LH

d1
HL

d1
HH

rows columns

Figure 2: One level of filter bank for non-standard division
of the spectra.

3 The Algorithm

In this section we present basic premises and modification
of the SegDTWT algorithm so it can be generalized to
images. The image will be divided to rectangular segments
of dimensions sx(nx, ny), sy(nx, ny), m denotes length of
the (possibly longer) filter. Working with images, their
dimensions are usually known beforehand. Due to this
fact, some simplifications can be introduced:

• Initially whole image has to be extended at the borders
by r(J) pixels, the values of the closest (m − 1) ones
are set according to the selected boundary treatment
method, and the rest is set to zero.

• The extensions of any single segment can be calcu-
lated beforehand so the segments do not have to be
processed in the natural order.

• There is no longer need for special treatment of the
next to the last and the last segments as well.

3.1 Generalization of SegDTWT

More detailed study of the SegDTWT algorithm (e.g. from
[6, 12]) reveals two restricting features:
• The algorithm was primarily developed for real time
processing of acoustic signals therefore the left exten-
sion Lmax is chosen to be as high as possible to maxi-
mize re-usage of received samples. It is not necessary
for images, so more general approach is taken in the
following text.

• The algorithm considers only segments of equal size.
In the following text it is shown that lengths of both
the right and the left extensions of n-th and (n+1)-th
segment, respectively, depend only on the position of
their dividing line in the image.

Next results are based on Theorem 8.11 from [6] which can
be written as:
Theorem 3: Let the n-th segment is given, whose length

including its left extension is l(n). Then the left exten-
sion of the next segment L(n+ 1) can be computed by the
formula:

L(n+1) = l(n)− 2Ji for i ∈

[

l(n)− r(J)

2J
,
l(n)

2J

]

, i ∈ N
0.

(4)
And for the right extension of n-th segment the following

holds:

R(n) = r(J) − L(n+ 1). (5)

Maximum left extension Lmax is naturally reached for

i = ceil
(

l(n)−r(J)
2J

)

. Minimum left extension Lmin for

i = floor
(

l(n)
2J

)

. Rmin (for Lmax) is already known (2)

and Rmax (for Lmin) can be written as

Rmax(n) = 2Jfloor

(

ns+ r(J)

2J

)

− ns, (6)

(Proof is the same as in Theorem 8.14 in [6]). Using The-
orem 3 we can write:

L(n+1) = l(n)−2J
[

ceil

(

l(n)− r(J)

2J

)

+ k

]

where k ∈ N
0,

(7)
satisfying L(n+1) ≥ Lmin(n+1) at the same time. Com-
paring formulas (2), (6) and (7), right extension of n-th
segment can be written as:

R(n) = 2J
[

ceil
(ns

2J

)

+ k
]

− ns, where k ∈ N
0 (8)

satisfying R(n) ≤ Rmax(n) at the same time.
The next theorem describes situation with segments not
sharing the same size. The proof is omitted here due to its
extent.
Theorem 4: This result is graphically shown in Fig 3.

0 516x

1)

2)

3)

4)

5)

Figure 3: Figure presenting Theorem4. Five cases of di-
vision of the input signal x are shown. There is always a
division of a pair of segments between samples 515 and 516,
but the divisions of the preceding part differs from case to
case. Nevertheless, the lengths of related extensions of the
neighboring segments are equal in all cases.

3.2 SegDTWT2D algorithm

In this section we present the actual generalization of the
SegDTWT algorithm considering separability and non-
standard spectral division as it was mentioned in Sec-
tion 2.3. The new algorithm is called SegDTWT2D. For
sake of simplicity only zero padding at the image bound-
aries is considered.
Let us denote current segment by (nx, ny) and its dimen-
sions by sx(nx, ny) and sy(nx, ny). The image is divided
into rectangular segments which are not required to have
equal sizes (see, for example, Fig. 4). A special care is
taken when working with segments of left boundary (1, ·),
right boundary (endx, ·), top boundary (·, 1) and bottom
boundary (·, endy).
The algorithm exploits the modified formulas (5), (8) so
that for nx = 1, . . . , endx− 1 and ny = 1, . . . , endy − 1 and
some k (satisfying condition in (8)) holds:

R(nx) = 2J
[

ceil

(

Snx

2J

)

+ k

]

− Snx
, (9)

B(ny) = 2J
[

ceil

(

Sny

2J

)

+ k

]

− Sny
, (10)

L(nx + 1) = r(J) −R(nx), (11)

T (ny + 1) = r(J) −B(ny), (12)

where nx, ny denotes current segment, Snx
, Sny

denotes
the size of the smallest rectangle drawn from from the top
left corner of the original image which still contains whole
current segment. R(nx), B(ny) are right and bottom ex-
tension of current segment, L(nx+1), T (ny+1) are left and
top extension of segments neighboring in the correspond-
ing directions. For segments with nx = 1, ny = 1, nx =
endx, ny = endy we can show that

L(1) = T (1) = R(endx) = B(endy) = r(J). (13)

Algorithm 5:[SegDTWT2D via separability] Let the im-
age x of width Sx and height Sy, highpass filter g, lowpass
filter h, both of length m, the depth of wavelet decompo-
sition J be given:
1. The image is extended at boundaries by r(J) zero pix-
els. However, for further reference, the original dimen-
sions Sx, Sy and the origin are used.

2. If all pixels of the image have not been pro-
cessed: Choose a segment (nx, ny) of dimensions
sx(nx, ny), sy(nx, ny) and set it as “current”. Else
finish the algorithm.

3. Extend the current segment according to formulas (9),
(10), (11), (12) and (13).

4. Calculate 2D DTWT of depth J via separability prop-
erty using one step of algorithm 1 at time on all rows
and then on all columns but omitting step 2(a).

5. Modify the calculated wavelet coefficients by trimming
off certain number of columns from the left and certain
number of rows from the top, specifically: on the j-th
level, j = 1, 2, . . . , J − 1 trim off r(J −k) columns and
r(J − k) rows of coefficients.

6. If the segment index is equal to nx = endx or ny =
endy trim off the coefficients in the same manner as
was described in previous step, but this time from the
right and bottom, respectively.

7. Store the resulting sets of coefficients (3J +1 for each
segment) under
nx,nyaJ

LL,
nx,nydJ

LH,
nx,nydJ

HL,
nx,nydJ

HH,. . . ,
nx,nyd1

HH

and continue to item 2.

The algorithm can be extended to any type of boundary
treatment like it was made in Algorithm 2.

4 Implementation

For performance purposes the new algorithm was imple-
mented in C++. We used the Intel Threading Building
Blocks (TBB) library to introduce parallelism into our pro-
gram. TBB provides algorithms and concepts to fully ex-
ploit possibilities of multi-core processors. It also provides
automatic task scheduler and automatic thread manage-
ment. For more detailed information on using TBB in
image processing see [14] or [15].
A basic concept of TBB is that tasks are recursively
divided to smaller parts and they are processed in par-
allel. When processing an image, the initial task range
spans the whole image. This range is than recursively split
into halves and when the new range is small enough, it is

(a)

(b)

(c)

Figure 4: Example of division of image of size Sx =
512, Sy = 512. (a) The image is extended by r(J) zero
pixels for J = 4,m = 9, from which m − 1 closest pixels
is changed by symmetric extension. It corresponds with
step 1 in Algorithm 5. (b) Six segments with their exten-
sions calculated using formulas (9), (10), (11), (12) and
(13) with k = 0. It corresponds with step 3 in Algorithm
5. (c) Alternative extensions of the segments calculated
using k = 4 (producing the same transform coefficients in
the end).

processed. TBB manages this splitting automatically and
even allows task stealing to achieve load balancing between
working threads. A programmer can control size of the
smallest range by parameter grainsize, but if TBB de-
cides not to split the range any more, the grainsize does
not have to be reached so grainsize is only a coarse value
defining size up to which range will not be split. Hence,
the size of the segment to be processed is not known be-
forehand. At this point the new algorithm enters and after
every division the extensions of two affected segments are
computed. Regarding to the Theorem 4 these extensions
are not affected by any other division of ranges.

At this point a very important fact needs to be high-
lighted. Every division of the range brings redundancy
of the computation. Obviously the number of redundant
rows or columns of input pixels is equal to r(J), which is
dependent on the length of the filters m and the depth
of wavelet decomposition J , see (1). So it is advisable to
use as few divisions as possible, but at the same time it
is important to effectively exploit all available threads to
achieve speedup.

4.1 Testing

Via testing, we would like to establish the optimum
grainsize for a given r(J) to reach the highest speedup
possible. The serial version, to which parallel versions in
different setups are compared to, is computed as if whole
image was one segment, so there are extensions only at the
borders by r(J). For testing purposes we used system run-
ning Intel C2Q Q9550 (4 cores). All data types were single
precision 32-bit floating points. The compiler associated
with Microsoft Visual Studio 2008 was used with \O2 op-
timization parameter. Every test was performed ten times
and as the result the median was taken.

Firstly, we performed several tests with 4096×4096px
image for fixed r(5) and varying grainsize. It can be
seen in Fig. 5 that the speedup is relatively independent
on choice of grainsize, but with increasing r(J) bigger
grainsize is needed. Using that, speedup for different
r(J) with almost optimum choice of grainsize ∼ 2r(J) is
shown in Fig. 6.

4.2 Scalability

We got an other interesting result through Intel paral-
lel Universe Portal. It is a web service where Intel of-
fers computing time on their 8-Core Intel Xeon@2.80GHz
with hyperthreading (effectively 16 cores). The tests were
performed in the following setup: image 4096×4096px,
m = 10, J = 4 leading to r(J) = 135, grainsize was
set to 512 in both directions. In Fig. 7 obvious scalability
of speedup can be seen – that means the performance is
increasing with increasing number of cores.

0

1

2

3

4

grainsize

sp
ee
d
u
p
[-
]

b b b b
b

b

b
b

b
b b

b
b

b

b
b

b b

b

b
b

b
b b

b

b
b

b

b
b b

b
b

b

b

b
b b

b

b
b

b

32 64 128 256 512 1024 2048

m: 2 6 10 14 18

Figure 5: Speedup for increasing grainsize for different
values of r(5) (31, 155, 279, 403, 527 corresponding to
m = 2, 6, 10, 14, 18)

sp
ee
d
u
p
[-
]

r(J)

0
1
2
3
4

31 93 155 217 279 341 403 465 527 589

Figure 6: Speedup for increasing r(J) for J = 5 and m =
2..20

sp
ee
d
u
p
[-
]

Cores

0
1
2
3
4
5
6
7
8

1 2 4 8 16

Figure 7: Speedup on Intel Parallel Universe

5 Software

The described implementation is distributed as a static li-
brary for 32bit OS Windows freely under GPLv2 license.
The library is accessible from http://www.utko.feec.
vutbr.cz/~rajmic/papers/segdtwt2Dv10_win.zip. To
use the library, it is necessary to include header file
segDTWT.h from include directory and set linker to in-
clude segDTWT2D.lib from the lib directory. The func-
tion, which performs the parallel forward wavelet trans-
form is segDTWTfwd 32f C1 and accepts the following pa-
rameters:

segDTWTfwd 32f C1(float* i_data,

int i_widthStep,

float* subbands[],

int widthSteps[],

int levels,

Size size,

separableWavelet* w);

float* i data – pointer to the beginning of the image

int i widthStep – distance between two consecutive rows
of the image in memory in bytes

float* subbands[] – array of pointers to the output sub-
bands. For details see below.

int widthSteps[] – array of the distances between two
consecutive rows in bytes in EACH individual subband

int levels – depth of decomposition, the J variable

Size size – dimensions of the input image
typedef struct

int width;

int height;

Size;

separableWavelet* w – object defining wavelet filters

Prior to the calling of this function one must have
separableWavelet object prepared and also the memory
for the output subbands need to be allocated. One of the
constructors for separableWavelet class accepts wavelet
name and file name, where the wavelet filters definitions
are located.

separableWavelet(string name="default",

const char* file = "wavelets.dat")

The wavelets.dat file is distributed with the library and
it contains wavelet filters defined in MatLab wavelet tool-
box, but more filters can be added keeping the prescribed
format.

ω1

ω2 (π, π)

(−π,−π)

HH1HH1

HH1HH1

HL1 HL1

LH1

LH1

HH2HH2

HH2HH2

LH2

LH2

HL2 HL2
LL

Figure 8: Subbands labeling

The subbands[] is array of pointers to the output
subbands. The pointers are stored in the following order:
subbands[0]=HL1,[1]=HH1,[2]=LH1,[3]=HL2,[4]=HH2,

[5]=LH2 ...[last]=LL assuming the subband labeling
as depicted in fig. 8. The memory allocation can by done
by means of the allocateSubbands function:

http://www.utko.feec.vutbr.cz/~rajmic/papers/segdtwt2Dv10_win.zip
http://www.utko.feec.vutbr.cz/~rajmic/papers/segdtwt2Dv10_win.zip

allocateSubbands(float* subbands[],

int widthSteps[],

int level,

int filter_length_L,

int filter_length_H,

Size size);

float* subbands[] – array of pointers to be filled with
pointers to the subbands

int widthSteps[] – array of the distances between two
consecutive rows in bytes in EACH individual subband

int filter length L/H] – length of the low- high-pass
filter

The subband dimensions Nx(m, j), Ny(m, j) in the de-
composition step j = 1 . . . J are the following:

Nx(m, j) = floor(2−jSx + (1− 2−j(m− 1)) (14)

Ny(m, j) = floor(2−jSy + (1− 2−j(m− 1)), (15)

where original dimensions of the input image are denoted
as Sx, Sy.

In addition, two global variables can be set. The
wrapType extensionType defining the boundary treat-
ment method:

typedef enum

ZEROS_PADDING = 0,

CONST_PADDING = 1,

SYMETRIC_HP = 2,

SYMETRIC_WP = 3

wrapType;

and Size segSize defining the grainsize for the
parallel for algorithm.

6 Conclusion

In this paper, the new algorithm SegDTWT2D was pre-
sented. It allows segmentwise computation of 2D DTWT.
Several assumptions were established and two theorems ex-
tending the original algorithm SegDTWT were proposed.
It was shown that the new algorithm is suitable for paral-
lel execution on multi-core processors and it brings signif-
icant speedup of an execution, especially for small values
of r(J). Also the parallel implementation seems to scale
well on processors with higher number of cores.

Further effort will be devoted to algorithm for segmented
inverse wavelet transform and to more general filter banks
(eg. wavelet packets, nonseparable filter banks).

Acknowledgments

This paper was supported by FEKTJ-10-8/225 grant of the
Brno University of Technology and COST grant OC08057.

References

[1] D. S. TAUBMAN and M. W. MARCELLIN, JPEG2000, Im-
age compression fundamentals, standards and practice, ser. 3.
USA: Kluvert Academic Publishers, 2002.

[2] D. L. DONOHO, “De-noising by soft-thresholding,” 1994.
[3] J. Z. WANG and G. WIEDERHOLD, “Wavemark: Digital im-
age watermarking using daubechies’ wavelets and error correct-
ing coding,” in Proceedings of the SPIE Int. Symp. on Voice,
Video, Data Communications, 1998.

[4] R. N. STRICKLAND and H. I. HAHN, “Wavelet transform
methods for object detection and recovery,” IEEE Trans Im-
age Process, vol. 6, no. 5, pp. 724–35, 1997.

[5] S. MALLAT, A Wavelet tour of signal processing, The Sparse
way, 3rd ed. Boston: Academic Press, 2008.

[6] P. RAJMIC, “Exploitation of the wavelet transform and math-
ematical statistics for separation signals and noise, (in czech),”
Ph.D. dissertation, Brno University of Technology, Brno, 2004.

[7] D. CHAVER, M. PPRIETO, L. PINUEL, and F. TIRADO,
“Parallel wavelet transform for large scale image processing,”
Parallel and Distributed Processing Symposium, International,
vol. 1, p. 0004, 2002.

[8] D. ONCHIS and C. MARTA, “Multiple 1d data parallel wavelet
transform,” Symbolic and Numeric Algorithms for Scientific
Computing, International Symposium on, vol. 0, pp. 178–181,
2005.

[9] J. FRANCO, G. BERNABE, J. FERNANDEZ, and M. E. ACA-
CIO, “A parallel implementation of the 2d wavelet transform
using cuda,” Parallel, Distributed, and Network-Based Process-
ing, Euromicro Conference on, vol. 0, pp. 111–118, 2009.

[10] T. NGUYEN and G. STRANG, Wavelets and Filter Banks.
Wellesley College, 1996.

[11] V. SILVA, L. SA, and L. SÁ, “General method for perfect recon-
struction subband processing of finite length signals using linear
extensions,” IEEE Trans. on Signal Processing, vol. 47, 1999.

[12] P. RAJMIC, “Algorithms for segmentwise computation of for-
ward and inverse discrete-time wavelet transform,” Journal of
Concrete and Applicable Mathematics,Special Issues on Applied

Mathematics and Approximation Theory, 2010.
[13] R. VARGIC, Wavelets and filter banks. Bratislava: STU in

Bratislava, 2004, in Slovak.
[14] Z. PRUSA and J. MALY, “Parallel image processing using in-

tel libraries,” in 32nd International Conference on TELECOM-
MUNICATIONS AND SIGNAL PROCESSING, Dunakiliti:
ASSZISZTENCIA Congress Bureau, 2009, pp. 1–4.

[15] J. REINDERS, Intel Threading Building Blocks. New York:
McGraw-Hill, 2007.

	Introduction
	Background and related work
	Classical DTWT algorithm
	SegDTWT algorithm
	Separability in two dimensions

	The Algorithm
	Generalization of SegDTWT
	SegDTWT2D algorithm

	Implementation
	Testing
	Scalability

	Software
	Conclusion

